

BELGHORIA (Sohan Chakraborty-MOB-9163894874)

No of Question-100 TIME-2hr 30min Marks-100 1. 3-phenylpropenoic acid is IUPAC name of : a) Mendaleic acid b)Pyruvic acid c) Succinic acid d)Cinnamic acid 2. How many isomers are possible for the compound having molecular formula C₂H₂Br₂? a) 5 b)4 c)6 d)8 3. The strain in bonds of cyclopropane is : a) _{0°44′} b)_{24°44}′ c) 9°44' d) 5°16′ 4. Chlorine in vinyl chloride is less reactive because : a) sp²-hybridized carbon has more acidic character than sp³-hybridized carbon b) C-Cl bond develops partial double bond character c) Of resonance d) All of the above are correct 5. The alkene that exhibits geometrical isomerism is a) Propene b)2-methyl propene c)2-butene d)2-methyl-2-butene 6. Pick out the alkane which differs from the other members of the group a) 2,2-dimethyl c) 2-methyl butane d)2, 2-dimethyl b)Pentane propane butane 7. a) 1-amino prop-2-enal b) 3-amino prop-2-enal c) 1-amino-2-formylethene d) 3-amino-1-oxoprop-2-ene 8. Detection of sulphur in sodium extract is done by

a) Lead acetate	b)Sodium nitroprusside
c) Both (a) and (b)	d)None of these

9. The IUPAC name for

- a) 1,1-dimethyl-1,2-butanediol
- b) 2-methyl-2,4-pentanediol
- c) 4-methyl-2,4-pentanediol
- d) 1,3,3-dimethyl-1,3-propanediol
- 10. In the following carbocations, the stability order is :

(I) RCH_2CH_3 (II) $\swarrow I_{CH_3}^{CH_3}$ (III) $\swarrow I_{CH_3}^{CH_3}$ (III) $\swarrow I_{CH_3}^{CH_3}$

	a) > > V >	b)IV > I > II > III	c) IV > III > II > I	d) > V > >	
11.	. The shape of the $\boldsymbol{\pi}$ electron cloud in acetylene is				
	a) Linear	b)Planar	c) Cylinder	d)Doughnut	
12.	Acidified sodium fusion colouration which cor		of ferric chloride solut	ion gives blood red	
	a) S and Cl	b)N and S	c) N	d)S	
13.	Conversion of chlorot	penzene to phenol invo	lves		
	a) Electrophilic substi	tution	b)Nucleophilic substitution		
	c) Free radical substitution d) Electrophilic addition				
14.	In sulphur detection of sodium extract. Form	of an organic compoun ation of violet colour is	•	le solution is added to	
	^{a)} Na ₃ Fe(CN) ₆	^{b)} Na ₃ [Fe(CN) ₅ NOS]	^{C)} Fe(CNS) ₃	d)None of these	
15.	The maximum bond e	energy is present			
	a) _{C-H}	b) _{C-C}	c) _{C-N}	d) _{C-O}	
16.	6. The number of secondary hydrogen's in 2, 2-dimethyl butane is				

a) 8	b)6	c) 4	d)2
	,	,	,

17. The name of the compound,

a) 2-pentanone b) Pentanone-2 c) Pentan-2-one d) All are correct

18. Find the non-staggered form(s) of ethane :

a)

- b)
- c)

d) None of these

19. With a change in hybridisation of the carbon bearing the charge, the stability of a carbanion increase in the order

a) $sp < sp^{2} < sp^{3}$ b) $sp < sp^{3} < sp^{2}$ c) $sp^{3} < sp^{2} < sp$ d) $sp^{2} < sp < sp^{3}$

21.

- a) Resonating structures
- b) Tautomers
- c) Geometrical isomers
- d) Optical isomers
- 22. The correct definition for organic chemistry is :
 - a) Chemistry of carbon compounds
 - b) Chemistry of compounds derived from living organisms
 - c) Chemistry of hydrocarbons and their derivatives
 - d) None of the above
- 23. Which of the organic compounds will give red colour in Lassaigne test?

- a) NaCNS b) || c) || NH2-C-NH2 NH2-C-NH2
- 24. The compound formed in the positive test for nitrogen with the Lassaigne solution of an organic compound is
 - a) $\operatorname{Fe}_{4}[\operatorname{Fe}(\operatorname{CN})_{6}]_{3}$ b) $\operatorname{Na}_{3}[\operatorname{Fe}(\operatorname{CN})_{6}]$ c) $\operatorname{Fe}(\operatorname{CN})_{3}$ d) $\operatorname{Na}_{4}[\operatorname{Fe}(\operatorname{CN})_{5}\operatorname{NOS}]$
- 25.
- a) 1,2,3-trieyanopropane
- b) Propane-1,2,3-tricarbonitrile
- c) 1,2,3-cyanopropane
- d) Propane tricarbylamine
- 26. Which of the following reactions proceeds via secondary free radical?

a)
$$\begin{array}{c} CH_3 - CH = CH_2 \xrightarrow{HBr} CH_3 - CH - CH_3 \\ | \\ Br \\ c) \\ C_6H_6 \xrightarrow{Br_2/FeBr_3} C_6H_5Br \\ \end{array} \begin{array}{c} H_3 - CH - CH_3 \\ | \\ Br \\ d) \\ C_6H_6 \xrightarrow{Br_2} UV \\ light \\ UV \\ light \\ CH_3 - CH_2Br \\ \end{array} \right)$$

- 27. The production of an optically active compound from a symmetric molecule without resolution is called :
 - a) Walden inversion
 - b) Asymmetric synthesis
 - c) Partial racemisation
 - d) None of these

28. Among the following, which one has more than one kind of hybridization?

	(i) CH ₃ CH ₂ CH ₂ CH ₃			
	(ii) CH ₃ CH = CHCH ₃			
	(iii) $CH_2 = CH - CH \equiv CH$			
	(iv) CH ≡ CH			
	a) (ii) and (iii)	b) (ii) and (i)	c) (iii) and (iv)	d) (iv)
29.	The IUPAC name of $C_6 H_6$	COCI is		
	a) Benzoyl chloride		b) Benzene chloro ketone	
	c) Benzene carbonyl chlo	oride	d) Chloro phenyl ketone	
20	In the commound			

30. In the compound,

Configuration at C_2 and C_3 atoms are ^{a)} S, S
^{b)} R, S
^{c)} S, R
^{d)} R, R 31. The number of isomeric alkenes with molecular formula C_6H_{12} are

- a) 8 b) 10 c) 11 d) 13
- 32. Which is wrong IUPAC name?

- b)
- c)
- d)

33. Which of the following statements is wrong?

- a) In general organic compounds have low m.p. and b.p.
- b) Isomerism is common in organic compounds
- c) Organic compounds cannot be synthesized in the laboratory
- d) The number of organic compound is very large
- 34. Nitroethane can exhibit one of the following kind of isomerism
 - a) Metamerism b) Optical activity c) Tautomerism d) Position isomerism
- 35. Which of the following would show configurational enantiomorphism?

a) NH₃

b) $(CH_3)_3 N$

- c) Methyl, ethyl, propylamine
- d) Methyl, allyl, phenyl, benzyl ammonium iodide
- 36. Heterolysis of carbon-chlorine bond produces :

- a) Two free radicals
- b) Two carbonium ions
- c) Two carbanions
- d) One cation and one anion
- 37. Maximum enol content is in

38. Which of the following compounds will show metamerism?

^{a)} CH ₃ - CO-C ₂ H ₅	b) C ₂ H ₅ -S-C ₂ H ₅	с) сн ₃ -0-сн ₃	d) CH ₃ -O-C ₂ H ₅

39. The IUPAC name of the compound,

a) 2-methylpent-1-en-4-yne

- b) 4-methylpent-4-en-1-yne
- c) 2-methylpent-2-en-4-yne
- d) 4-methylpent-1-en-4-yne
- 40. Which of the following is elimination reaction

a)
b)
$$CH_3CH_2CH_2CI + aq.KOH \rightarrow CH_3CH_2CH_2OH +N(CH_3)_3$$

c) $CH_3-C-CH_2CH_3^{Alc.KOH}CH_3CH=CHCH_3$
H
CH_3-CH-CH_2Br + Alc.KOH

$$\begin{array}{c} \mathsf{CH}_3 \operatorname{-}\mathsf{CH} \operatorname{-}\mathsf{CH}_2\mathsf{Br} + \mathsf{Alc.Kr}\\ \mathsf{I}\\ \mathsf{d}) \qquad \mathsf{Br}\\ \stackrel{\Delta}{\to} \mathsf{CH}_3\mathsf{CH} \operatorname{-}\mathsf{CH}_2\mathsf{OH} \end{array}$$

ОH

I

Edit with WPS Office

fluoroethanol is

	a) Eclipse Gauche Anti	b) Gaucha Eclipse Anti	^{c)} Eclipse, Anti, Gauche	d) Anti Gauche Eclipse
51.	Phosphorus is estimated		Lenpse, Anti, Oduene	Anti, Oddene, Lenpse
	a) Na ₃ PO ₄	b) P ₂ O ₅	c) P ₂ O ₃	d) $Mg_2P_2O_7$
52.	The number of asymmet respectively :	ric carbon atoms and the	number of optical isomers	s in CH ₃ (CHOH) ₂ COOH are
	a) 3 and 4	b) 1 and 3	c) 2 and 4	d) 2 and 3
53.	Species containing carbo	on with three bonds and a	n electron are called :	
	a) Carbenes	b) Caarbanions	c) Carbocation	d) Free radicals
54.	Which of the aldehyde is	most reactive?		
	a) C [°] H²-CHO		^{b)} CH ₃ CHO	
	c) HCHO		d) All the equally reactive	9
55.	5. Which of the following cannot show S _N 1 reaction?			
	1	\checkmark		
	a)	b)	c)	d)
56.	3-methyl penta-1,3-diene	is:		
	a) $CH_2 = CH(CH_2)_2CH_3$			
	b) $CH_2 = CHCH(CH_3)CH_2$	C C C C C C C C C C C C C C C C C C C		
	c) $CH_{3}CH = C(CH_{3})CH =$	CH ₂		
	d) $CH_3 - CH = CH(CH_3)_2$			
57.	Which of the following co	ompounds is optically acti	ve?	
	a) 1 – butanol	b) Isopropyl alcohol	c) Acetaldehyde	d) 2-butanol
58.	How many optically activ CHO.CHOH.CHOH.CHOF		a compound of the formula	a,
	a) 2	b) 4	c) 3	d) 8
59.	"The negative part of the atoms." This statement i		carbon atom joined to the	e least number of hydrogen

- a) Markownikoff's rule
- b) Peroxide effect
- c) Baeyer's strain theory

d) Thiele's theory

	a) micro o meory				
60.	The total number of isomeric carbocations possible for the formula $C_4^{}H_9^{^{+}}$ is :				
	a) 3	b) 4	c) 2	d) 5	
61.	$CH_{3}Br(C)$, under identica		. 20		
	a) C>B>A	b) B>C>A	c) C>A>B	d) A>B>C	
62.	red solution. The organic	c compound contains		eatment with FeSO ₄ solution, FeCl ₃ and HCl gives a	
	a) Both nitrogen and sul	pnur	b) Nitrogen only		
	c) Sulphur only		d) Halogen		
63.	d-tartaric acid and l-tarta	ric acid are :			
	a) Structureal isomers	b) Diastereoisomers	c) Tautomers	d) Enantiomers	
64.	Which of the following is	a pair of functional isom	ers?		
	a) CH ₃ COCH ₃ ,CH ₃ CHO		^{b)} C ₂ H ₅ CO ₂ H, CH ₃ CO ₂ CH	3	
	c) C ₂ H ₅ CO ₂ H, CHCO ₂ C ₂ H	5	d) CH ₃ CO ₂ H, CH ₃ CHO		
65.	Which of the following is	an optically active comp	ound?		
	a) Lactic acid	b) Chloro acetic acid	^{c)} Meso-tartaric acid	d) Acetic acid	
66.	Give the correct IUPAC n CH ₃	name for			
	CH ₃ .CH ₂ OCH.CH ₂ .CH ₂ .CH	H²CI			
	a) 2-ethoxy-5-chloropent	ane	b) I-chloro-4-ethoxy-4-me	ethylbutane	
	c) 1-chloro-4-ethoxypent	ane	d) Ethyl-1-chloropentylet	her	
67.	The IUPAC name of the	compound,			
	a) 1,2,3-trihydrosypropar	ne			
	b) 3-hydroxypentane-1,5-	-diol			
	c) 1,2,3-hydroxypropane				
	d) Propane-1,2,3-triol				
68.	Bond energywith the	e increase in number of lo	one pairs on the bonded at	oms.	
	a) Decreases	b) Increases	c) Does not change	d) None of these	

69.	A liquid decomposes at its normal boiling point. It can be purified by			
	a) Sublimation		b) Steam distillation	
	c) Vacuum distillation		d) Fractional distillation	
70.	On monochlorination of	2-methyl butane, the num	ber of chiral compounds f	ormed are :
	a) 2	b) 4	c) 6	d) 8
71.	Stability of which interm	ediate is not governed by	hyperconjugation?	
	a) Carbon cation	b) Carbon anion	c) Carbon free radical	d) None of these
72.	nitrogen was passed in 1	100mL of 0.1M sulphuric	g of an organic compound acid. The excess of acid re ation. The organic compou c) Urea	equired 20mL of 0.5 M
73.	Conversion of CH_4 to CH	$I_{_3}$ Cl is an example of whic	h of the following reaction?	
	a) Electrophilic substitut	ion	b) Free radical addition	
	c) Nucleophilic substitut	ion	d) Free radical substitution	
74.	Number of possible ison	ners of glucose are :		
	a) 10	b) 14	c) 16	d) 20
75.	The reaction $CH_{3}CH_{2}CHCH_{3} \xrightarrow{NaNH_{2}} Bute$ Br The correct statement (s	ne-1 and butane -2 (majo	r)	
	a) 2-butene is Saytzeff p	,	b) 1-butene is Hofmann	(s) product
	c) The elimination reacti	on follows Saytzeff rule	d) All of the above	
76.	Consider the following c	arbanions		
	(II) 0 ₂ N-CH ₂			
	(III)			

Correct order of stability is					
a) > >	b) III>II>I	c) > >	d) > >		

77. The stability of 2,3-dimethyl but-2-ene is more than 2-butene. This can be explained in terms of :

- a) Resonance b) Hyperconjugation c) Electromeric effect d) Inductive effect
- 78. Protin solvent is
 - a) Diethyl ether b) n-hexane

c) Acetone

d) Ethanol

79. Addition of Br_2 on trans-butene-2 gives :

a) A racemic mixture of 2,3-dibromobutane

- b) Meso form of 2,3-dibromobutane
- c) Dextro form of 2,3-dibromobutane
- d) Laevo form of 2,3-dibromobutane
- 80. Among the following compounds (I-III) the correct order of reaction with electrophilic reagand is

a) ||>|||>|

b) III<I<II

c) |>||>|||

d) I=II>III

- 81. During AgNO₃ test for detection of halogens, sodium extract is boiled with few drops of conc. HNO₃ to decompose
 - a) NaCN b) Na₂S c) Both (a) and (b) d) None of these
- 82. Which is true about following?

- a) Only III is a chiral compound
- b) Only II and IV are chiral compounds
- c) All four are chiral compounds

a) 2

- d) Only I and II are chiral compounds
- 83. How many chiral compounds are possible on monochlorination of 2-methyl butane?
 - b) 4 c) 6 d) 8

- 84. How many isomers of $C_{5}H_{11}OH$ will be primary alcohols?
 - a) 5 b) 4 c) 3 d) 2

85. The epoxide ring consists of which of the following?

- a) Three membered ring with two carbon and one oxygen
- b) Four membered ring with three carbon and one oxygen
- c) Five membered ring with four carbon and one oxygen.
- d) Six membered ring with five carbon and one oxygen.
- 86. The reaction which is not the example of nucleophilic substitution among the following is

a) $CH_{3}C-Br + CH_{3}OH \rightarrow CH_{3}C-OCH_{3} + HBr$ b) $CH_{3}C-CI + aq.KOH \rightarrow CH_{3}C-OH + KCI$ c) d)

87. Consider the following reaction

Is an example of a) Substitution b) Elimination c) Addition d) Addition elimination 88. An important chemical method to resolve a racemic mixture makes use of the formation of : a) meso compound b) Enantiomer c) Racemers d) diastereoisomers 89. Red colour complex ion formed on adding FeCl₃ to sodium extract when N and S both are present in organic compound is b) [Fe(CNS)]²⁺ ^{c)} [Fe(CNS)₂]⁺ d) [Fe(CN),]³⁻ a) [Fe(CN),]4-90. (I)CH₃CH₂Br $\xrightarrow{\text{LAH}}$ C₂H₆and (II) $(CH_3)_3^{T}CBr \xrightarrow{LAH}$ alkene, The reason for this is b) (I) $S_{N}1$, (II) E_{2} mechanism a) (I)S_N2(II) E₁ mechanism ^{c)} (I)S_N1, (II) E_1 mechanism ^{d)} (I) S_N^2 ,(II) E_2^2 mechanism

91. How many σ and π -bonds are there in the molecule of tetracyanoethylene?

	a) 9 σ and 9 π	b) 5 σ and 9 π	c) 9 σ and 7 π	d) 5 σ and 8 π
92.	Which of the following co	omplex formation indicate	es presence of sulphur in t	he organic compound
	when sodium nitroprussi	ide is added to sodium ex	tract of the compound?	
	a) Fe ₄ [Fe(CN) ₆]	^{b)} Na₂[Fe(NO)(CN)₅]	^{C)} Fe ₄ (CNS) ₂	^{d)} Na₄[Fe(CN)₅NOS]

Edit with WPS Office

93. Who pointed out the concept hyperconjugation?

	a) Nathan and Baker	b) Mullikan	c) Kekule	d) Kolbe
94.	Alkyl halide can be conv	erted into alkene by		
	a) Nucleophilic substitut	ion reaction		
	b) Elimination reaction			
	c) Both nucleophilic sub	stitution and elimination r	eaction	
	d) Rearrangement			
95.	The order of reactivities	of the following alkyl halio	les for a S _N 2 reaction is :	
	^{a)} RF > RCl > RBr > R	I		
	b) _{RF} > _{RBr} > _{RCl} > _R	I		
	^{c)} RCl > RBr > RF > R	I		
	d) _{RI} > RBr > RCI > RF	-		
96.	The optically active alka	ne with lowest molecular	weight is :	
	a)	b)	c)	d)
97.	Which type of isomerism	n is most common among	ethers?	
	a) Metamerism	b) Functional	c) Chain	d) Position
98.	With a change in hybridis the order	sation of the carbon beari	ng the charge, the stability	of a carbanion increase in
	a) sp < sp ² < sp ³	b) sp < sp ³ < sp ²	c) $sp^3 < sp^2 < sp$	d) $sp^2 < sp < sp^3$
99.	A molecule is $R_{3}C-H$. I increases, then Z is : a) Electron attracting gro		−Z) and on doing so elec	ctron density on R ₃ —C part
	b) Electron withdrawing	group		
	c) Electron repelling grou	ир		
	d) Either of the above			
100	electrophilic substitution		ed on order of decreasing ne	reactivity towards
	^{b)} Phenol> n-propyl benz	zene> benzoic acid>		

c) Chlorotoluene >para-nitrotoluene>2-chloro-4-nitro toluene

d) Benzoic acid> phenol>n-propyl benzene

