BELGHORIA (Sohan Chakraborty-MOB-9163894874)

Single Correct Answer Type

1. The activation energies of two reactions are E_{1} and $E_{2}\left(E_{1}>E_{2}\right)$. If the temperature of the system is increased from T_{1} to T_{2}, the rate constant of the reactions changes from k_{1} to k_{1} in the first reaction and k_{2} and k_{2} in the second reaction. Predict which of the following expression is correct?
a) $\frac{\mathrm{k}_{1}^{\prime}}{\mathrm{k}_{1}^{\prime}}=\frac{\mathrm{k}_{2}^{\prime}}{\mathrm{k}_{2}^{\prime}}$
b) $\frac{k_{1}^{\prime}}{k_{1}^{\prime}}>\frac{k_{2}^{\prime}}{k_{2}^{\prime}}$
c) $\frac{\mathrm{k}_{1}^{\prime}}{\mathrm{k}_{1}^{\prime}}<\frac{\mathrm{k}_{2}^{\prime}}{\mathrm{k}_{2}^{\prime}}$
d) $\frac{\mathrm{k}_{1}^{\prime}}{\mathrm{k}_{1}^{\prime}}=\frac{\mathrm{k}_{2}^{\prime}}{\mathrm{k}_{2}^{\prime}}=1$
2. Effective collisions are those in which molecules must:
a) Have energy equal to or greater than the threshold energy
b) Have proper orientation
c) Acquire the energy of activation
d) All of the above
3. Consider the following statements,

The rate law for the acid catalysed hydrolysis of an ester being given as
Rate $=\mathrm{k}\left[\mathrm{H}^{+}\right]$[ester] $=\mathrm{k}$ [ester].
If the acid concentration is doubled at constant ester concentration

1. The second order rate constant, k is doubled.
2. The pseudo first order rate constant, k is double.

3 . The rate of the reaction is doubled.
Which of the above statements are correct?
a) 1 and 2
b) 2 and 3
c) 1 and 3
d) 1,2 and 3
4. Half-life of two samples is 0.1 and 0.8 s . Their respective concentration is 400 and 50 respectively.
The order of reaction is
a) 0
b) 2
c) 1
d) 4
5. The units of rate of reaction are
a) $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
b) $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$
c) $\mathrm{mol} \mathrm{s}^{-1}$
d) None of these
6. Units of rate constant of first and zero order reactions in terms of molarity M unit are respectively
a) $\mathrm{s}^{-1}, \mathrm{M} \mathrm{s}^{-1}$
b) $\mathrm{s}^{-1}, \mathrm{M}$
c) $\mathrm{M} \mathrm{s}^{-1}, \mathrm{~s}^{-1}$
${ }^{d)} \mathrm{M}, \mathrm{s}^{-1}$
7. The half time of a second order reaction is:
a) Inversely proportional to the square of the initial concentration of the reactants
b) Inversely proportional to the initial concentration of the reactants
c) Proportional to the initial concentration of reactants
d) Independent of the initial concentration of reactants
8. $\frac{1}{[\mathrm{~A}]^{2}} \mathrm{vs}$ times are a straight line. Order of reaction is
a) First
b) Second
c) Zero
d) Third
9. For an endothermic reaction where, $\Delta \mathrm{H}$ represents the enthalpy of the reaction in $\mathrm{kJ} / \mathrm{mol}$, the minimum value for the energy of activation will be
a) Less than ΔH
b) Zero
c) More than $\Delta \mathrm{H}$
d) Equal to $\Delta \mathrm{H}$
10. The unit of rate constant for a zero order reaction
a) Ls^{-1}
b) $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
c) $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$
d) $\mathrm{mol} \mathrm{s}^{-1}$
11. What is the formula to find value of $t_{1 / 2}$ for a zero order reaction?
a) $\frac{k}{[R]_{0}}$
b) $\frac{2 \mathrm{k}}{[\mathrm{R}]_{0}}$
c) $\frac{[\mathrm{R}]_{0}}{2 \mathrm{k}}$
d) $\frac{0.693}{k}$
12. For the reaction, $A+B \rightarrow C+D$. The variation of the concentration of the products is given by the curve:

a) X
b) Y
c) Z
d) W
13. Acid hydrolysis of sucrose is a
a) Pseudo first order reaction
b)Zero order reaction
c) Second order reaction
d) Unimolecular reaction
14. For a first order reaction the graph $\log [A]$ vs t is given below

x is equal to
a) $\frac{0.693}{\mathrm{k}}$
b) $\frac{\mathrm{k}}{2.303}$
c) $\frac{\mathrm{k}}{2.303}$
d) $\log [\mathrm{A}]_{0}$
15. The rate constant of a first order reaction is $4 \times 10^{-3} \mathrm{sec}^{-1}$. At a reactant concentration of 0.02 M , the rate of reaction would be:
a) $8 \times 10^{-5} \mathrm{M} \mathrm{sec}^{-1}$
b) $4 \times 10^{-3} \mathrm{M} \mathrm{sec}^{-1}$
c) $2 \times 10^{-1} \mathrm{M} \mathrm{sec}^{-1}$
d) $4 \times 10^{-1} \mathrm{M} \mathrm{sec}^{-1}$
16. The rate constant for the reaction, $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ is $3.0 \times 10^{-5} \mathrm{~s}^{-1}$. If the rate is $2.4 \times 10^{-5} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$ then the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}\left(\right.$ in $\mathrm{mol} \mathrm{L}^{-1}$) is
a) 0.04
b) 0.8
c) 0.07
d) 1.4
17. Activation energy of a reaction is:
a) The energy released during the reaction
b) The energy evolved when activated complex is formed
c) Minimum amount of energy needed to overcome the potential barrier of reaction
d) The energy needed to form one mole of the product
18. The activation energy for a reaction is $9.0 \mathrm{Kcal} / \mathrm{mol}$. The increase in the rate constant when its temperature is increased from 298 K to 308 K is:
a) 10%
b) 100%
c) 50%
d) 63%
19. The rate of first order reaction, $A \rightarrow$ Products, is $7.5 \times 10^{-4} \mathrm{~mol}$ litre ${ }^{-1} \mathrm{sec}^{-1}$. If the concentration of A is $0.5 \mathrm{~mol}_{\text {lite }}{ }^{-1}$ the rate constant is:
a) $3.75 \times 10^{-4} \mathrm{sec}^{-1}$
b) $2.5 \times 10^{-5} \mathrm{sec}^{-1}$
c) $1.5 \times 10^{-3} \mathrm{sec}^{-1}$
d) $8.0 \times 10^{-4} \mathrm{sec}^{-1}$
20. $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightleftharpoons 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$

For the above reaction which of the following is not correct above rates of reaction?
a) $\frac{-\mathrm{d}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=2 \frac{\mathrm{~d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}$
b) $\frac{-2 d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=\frac{\mathrm{d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}$
c) $\frac{\mathrm{d}\left[\mathrm{NO}_{5}\right]}{\mathrm{dt}}=4 \frac{\mathrm{~d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}$
d) $\frac{-2 \mathrm{~d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=4 \frac{\mathrm{~d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}=\frac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}$
21. A substance undergoes first order decomposition. The decomposition follows to parallel first order reactions as:

$$
\xrightarrow{\mathrm{K}_{1}=1.26 \times 10^{-4} \mathrm{sec}^{-1}} \mathrm{~B}
$$

The percentage distribution of B and C are:
a) 80% B and 20% C
b) $76.83 \% \mathrm{~B}$ and $23.17 \% \mathrm{C}$
c) 90% B and 10% C
d) $60 \% \mathrm{~B}$ and $40 \% \mathrm{C}$
22. In Arrhenius plot intercept is equal to
a) ${ }_{-E_{a} / R}$
b) $\ln A$
c) In k
d) $\log _{10} a$
23. Half-life period of a first order reaction is 1386 seconds. The specific rate constant of the reaction is:
a) $5.0 \times 10^{-2} \mathrm{~s}^{-1}$
b) $5.0 \times 10^{-3} \mathrm{~s}^{-1}$
c) $0.5 \times 10^{-2} \mathrm{~s}^{-1}$
d) $0.5 \times 10^{-3} \mathrm{~s}^{-1}$
24. On addition of AgNO_{3} to NaCl , white ppt. occurs:
a) Instantaneously
b) With a measurable speed
c) Slowly
d) None of these
25. Which is correct about zero order reaction?
a) Rate of reaction depends on decay constant.
b) Rate of reaction is independent of concentration.
c) Unit of rate constant is conc $^{-1}$
d) Unit of rate constant is conc ${ }^{-1}$ time $^{-1}$
26. The half-life period of a first order reaction is 1 min 40 s . Calculate its rate constant.
a) $6.93 \times 10^{-3} \mathrm{~min}^{-1}$
b) $6.93 \times 10^{-3} \mathrm{~s}^{-1}$
c) $6.93 \times 10^{-3} \mathrm{~s}$
d) $6.93 \times 10^{3} \mathrm{~s}$
27. The reaction $2 A+B+C \rightarrow D+$ Eis found to be first order in A, second in B and zero order in C. What is the effect on the rate of increasing concentration of A, B and C two times?
a) 72 times
b) 8 times
c) 24 times
d) 36 times
28. In a reaction, the threshold energy is equal to:
a) Activation energy + normal energy of reactants
b) Activation energy - normal energy of reactants
c) Activation energy
d) Normal energy of reactants
29. Which one is not correct?
a) Rate of zero order reaction depends upon initial concentration of reactant
b) Rate of zero order reaction does not depend upon initial concentration of reactant
c) $t_{1 / 2}$ of first order reaction is independent of initial concentration of reaction
d) $t_{1 / 2}$ of zero order reaction is dependent of initial concentration of reaction
30. A reaction proceeds by first order, 75% of this reaction was completed in 32 min. the time required for 50% completion is
a) 8 min
b) 16 min
c) 20 min
d) 24 min
31. The rate of the reaction
$\mathrm{CCl}_{3} \mathrm{CHO}+\mathrm{NO} \rightarrow \mathrm{CHCl}_{3}+\mathrm{NO}+\mathrm{CO}$ is equal to rate $\mathrm{k}\left[\mathrm{CCl}_{3} \mathrm{CHO}\right][\mathrm{NO}]$. If concentration is expressed in $\mathrm{mol} / \mathrm{L}$. The unit of k is
a) $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
b) $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$
c) $\mathrm{L}^{2} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$
d) s^{-1}
32. Observe the following reaction,
$2 A+B \rightarrow C$
The rate of formation of C is $2.2 \times 10^{-3} \mathrm{~m}$ o $l \quad \mathrm{~L}^{-1} \mathrm{~min}^{-1}$.
What is the value of $-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~min}^{-1}\right)$?
a) 2.2×10^{-3}
b) 1.1×10^{-3}
c) 4.4×10^{-3}
d) 5.5×10^{-3}
33. The unit of rate constant of a third order chemical reaction is
a) $\mathrm{mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1}$
b) $\mathrm{mol}^{-1} \mathrm{~s}^{-2}$
c) mol L
d) $\mathrm{s}^{-1} \mathrm{~mol}^{-2} \mathrm{~L}^{2}$
34. $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is an example of \qquad order.
a) Zero
b) Second
c) Third
d) Pseudo first order
35. Collision theory is applicable to
a) First order reactions
b)Zero order reactions
c) Bimolecular reactions
d) Intra-molecular reactions
36. The efficiency of an enzyme in catalyzing a reaction is due to its capacity
a) To form a strong enzyme substrate complex
b) To decrease the bond energy of all substrate molecules
c) To change the shape of the substrate molecule
d) To lower the activation energy of the reaction
37. The reaction
$2 A+B \rightarrow 3 C+D$
Which of the following does not express the reaction rate?
a) $\frac{\mathrm{d}[\mathrm{D}]}{\mathrm{dt}}$
b) $\frac{\mathrm{d}[\mathrm{A}]}{2 \mathrm{dt}}$
c) $-\frac{d[C]}{3 d t}$
d) $\frac{d[B]}{d t}$
38. If E_{f} and E_{r} are the activation energies of the forward and reverse reactions and the reaction is known to be exothermic then
a) $E_{f}<E_{r}$
b) $E_{f}>E_{r}$
c) $E_{f}=E_{r}$
${ }^{\text {d) }}$ No relation can be given between E_{f} and E_{r} as data are not sufficient
39. Milk turns sour at $40^{\circ} \mathrm{C}$ three times as faster as at $0^{\circ} \mathrm{C}$. The energy of activation for souring of milk is:
a) 4.693 kcal
b) 2.6 kcal
C) 6.6 kcal
d) None of these
40. Which plots will give the value of activation energy?
a) K vs. T
b) $1 / \mathrm{K}$ vs. T
c) In K vs.T
d) $\ln \mathrm{K}$ vs. $\frac{1}{\mathrm{~T}}$
41. In a second order reaction when the concentration of both reactant are equal, the reaction is completed in 500 s . How long will it take for the reaction to go to 60% completion?
a) 1000 s
b) 300 s
c) 3000 s
d) 2000 s
42. The rate constant (K) for the reaction $2 \mathrm{~A}+\mathrm{B} \rightarrow$ Product was found to be 2.5×10^{-5} litre $\mathrm{mol}^{-1} \mathrm{sec}^{-1}$ after $15 \mathrm{sec}, 2.60 \times 10^{-5}$ litre $\mathrm{mol}^{-1} \mathrm{sec}^{-1}$ after 30 sec and $2.55 \times 10^{-5} \mathrm{litr}$ $\mathrm{mol}^{-1} \mathrm{sec}^{-1}$ after 50 sec . The order of reaction is:
a) 2
b) 3
c) Zero
d) 1
43. The differential rate expression for the reaction $\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$ is:
a) $\frac{-\mathrm{d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=\frac{-\mathrm{d}\left[\mathrm{I}_{2}\right]}{\mathrm{dt}}=\frac{-\mathrm{d}[\mathrm{HI}]}{\mathrm{dt}}$
b) $\frac{\mathrm{d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=\frac{\mathrm{d}\left[\mathrm{I}_{2}\right]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{H}]]}{\mathrm{dt}}$
c) $\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{I}_{2}\right]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{HI}]}{\mathrm{dt}}$
d) $-2 \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=-2 \frac{\mathrm{~d}\left[\mathrm{I}_{2}\right]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{HI}]}{\mathrm{dt}}$
44. For the elementary step, $\left(\mathrm{CH}_{3}\right)_{3} \cdot \mathrm{CBr}(\mathrm{aq}) \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}(\mathrm{aq})+\mathrm{Br}(\mathrm{aq})$ the molecularity is:
a) Zero
b) 1
c) 2
d) Cannot ascertained
45. A graph plotted between $\log \mathrm{t}_{50 \%}$ vs. \log a concentration is a straight line. What conclusion can you draw from the given graph?
a) $n=1, t_{1 / 2}=\frac{1}{\mathrm{~K} \cdot \mathrm{a}}$
b) $n=2, t_{1 / 2}=1 / a$
c) $n=1, t_{1 / 2}=\frac{0.693}{K}$
d) None of the above
46. If a is the initial concentration then time required to decompose half of the substance for nth order is inversely proportional to:
a) a^{n}
b) a^{n-1}
c) a^{1-n}
d) a^{n-2}
47. The hydrolysis of ethyl acetate,
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}^{\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is:
a) First order
b) Second order
c) Third order
d) Zero order
48. The rate law for a reaction between the substances A and B is given by rate $=k[A]^{n}[B]^{m}$. On doubling the concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as
a) $\frac{1}{2^{m+n}}$
b) $(m+n)$
c) $(n-m)$
d) $2^{(n-m)}$
49. For the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$
The experimental data suggest
rate $=k\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{1 / 2}$
the molecularity and order of the reaction are respectively
a) $1, \frac{1}{2}$
b) 1,1
c) $\frac{3}{2}, \frac{3}{2}$
d) $2, \frac{3}{2}$
50. The rate of reaction increases with temperature due to
a) Decrease in activation energy
b)Increase in activation energy
c) Increase in collision frequency
d) Increase in concentration
51. In a first order reaction, the concentration of the reactant is decreased from 1.0 M to 0.25 M in 20 minute. The rate constant of the reaction would be:
a) $10 \mathrm{~min}^{-1}$
b) $6.931 \mathrm{~min}^{-1}$
c) $0.6931 \mathrm{~min}^{-1}$
d) $0.06931 \mathrm{~min}^{-1}$
52. The reaction obey I order with respect to H_{2} and ICl both $\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{ICl}(\mathrm{g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})+\mathrm{I}_{2}(\mathrm{~g})$
Which of the following mechanism is in consistent with the given fact?
Mechanism A: $\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{ICl} \rightarrow 2 \mathrm{HCl}(\mathrm{g})+\mathrm{I}_{2}(\mathrm{~g})$
Mechanism $\mathrm{B}:(\mathrm{i}) \mathrm{H}_{2}(\mathrm{~g})+\mathrm{ICl}(\mathrm{g}) \xrightarrow{\text { slow }} \mathrm{HCl}(\mathrm{g})+\mathrm{HI}(\mathrm{g})$
(ii) $\mathrm{HI}(\mathrm{g})+\mathrm{ICl}(\mathrm{g}) \rightarrow \mathrm{HCl}(\mathrm{g})+\mathrm{I}_{2}$
a) A and B both
b) Neither A nor B
c) A only
d) B only
53. Two reactions $\mathrm{A} \rightarrow$ products and $\mathrm{B} \rightarrow$ products have rate constants K_{A} and K_{B} at temperature T and activation energies E_{A} and E_{B} respectively. If $K_{A}>K_{B}$ and $E_{A}<E_{B}$ and assuming that A for both the reactions is same, then:
a) At higher temperatures K_{A} will be greater than K_{B}
b) At lower temperature K_{A} and K_{B} will differ more and $K_{A}>K_{B}$
c) As temperature rises K_{A} and K_{B} will be close to each other in magnitude
d) All of the above
54. The half life for a reaction ... of temperature.
a) Independent
b) Increased with increase
c) Decreased with increase
d) Dependent
55. The following mechanism has been proposed for the reaction of NO with Br_{2} to form NOBr
$\mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NOBr}_{2}(\mathrm{~g})$
$\mathrm{NOBr}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) \rightarrow 2 \mathrm{NOBr}(\mathrm{g})$
If the second step is the rate determining step, the order of the reaction with respect to $\mathrm{NO}(\mathrm{g})$ is
a) 1
b) 0
c) 3
d) 2
56. The unit and value of rate constant and that of rate of reaction are same for
a) Zero order
b) First order
c) Second order
d) Third order
57. According to collision theory of reaction rates:
a) Every collision between reactants leads to chemical reaction
b) Rate of reaction is proportional to velocity of molecules
c) All reactions which occur in gaseous phase are zero order reactions
d) Rate of reaction is directly proportional to collision frequency
58. Half-life of a reaction is found to be inversely proportional to the cube of initial concentration. The order of reaction is
a) 4
b) 3
c) 5
d) 2
59. A reaction involving two different reactants can never be
a) Bimolecular reaction
b) Second order reaction
c) First order reaction
d) Unimolecular reaction
60. For the non-equilibrium process, $A+B \rightarrow$ Products, the rate is first order with respect to A and second order respect to B. If 1.0 mole each of A and B are introduced into a 1 litre vessel and the initial rate was $1.0 \times 10^{-2} \mathrm{~mol} /$ litre-sec. The rate (in $\mathrm{mol}_{\mathrm{l}} \mathrm{litre}{ }^{-1} \mathrm{sec}^{-1}$) when half of the reactants have been used:
a) 1.2×10^{-3}
b) 1.2×10^{-2}
c) 2.5×10^{-4}
d) None of these
61. The activation energy of a reaction is zero. The rate constant for the reaction
a) Decreases with decrease of temp
b) Increases with increase of temp
c) Decreases with increase of temp
d) Is nearly independent of temp
62. The burning of coal represented by the equation; $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$. The rate of this reaction is increased by:
a) Decrease in the concentration of oxygen
b) Powdering the lumps of coal
c) Decreasing the temperature
d) Providing inert atmosphere for burning
63. At room temperature, the reaction between NO and O_{2} to give NO_{2} is fast, while that between CO and O_{2} is slow. It is due to:
a) CO is smaller in size than that of NO
${ }^{b}$) CO is poisonous The activation energy for the reaction,
c) $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ is less than $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$
d) None of the above
64. The rate of first order reaction is $1.5 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$ at 0.5 M concentration of the reactant. The half-life of reaction is
a) 0.383 min
b) 23.1 min
c) 8.73 min
d) 7.53 min
65. The rate constant of a first order reaction at $27^{\circ} \mathrm{C}$ is $10^{-3} \mathrm{~min}^{-1}$. The temperature coefficient of this reaction is 2 . What is the rate constant (in min^{-1}) at $17^{\circ} \mathrm{C}$ for this reaction?
a) 10^{-3}
b) 5×10^{-4}
c) 2×10^{-3}
d) 10^{-2}
66. The minimum energy required for the reacting molecules to undergo reaction is
a) Potential energy
b)Kinetic energy
c) Thermal energy
d) Activation energy
67. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ occur as $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2^{\prime}}$, and follows Ist order kinetics, hance
a) The reaction is unimolecular
b) The reaction is bimolecular
c) $t_{1 / 2} \propto a^{0}$
d) None of the above
68. The rate of a chemical reaction doubles for every $10^{\circ} \mathrm{C}$ rise of temperature. If the temperature is raised by $50^{\circ} \mathrm{C}$, the rate of the reaction increases by about
a) 10 times
b) 24 times
c) 32 times
d) 64 times
69. Which of the following statement is incorrect about the molecularity of a reaction?
a) Molecularity of a reaction is the number of molecules of the reactants presents in the balanced equation
b) Molecularity of a reaction is the number of molecules in the slowest step
c) Molecularity is always a whole number
d) There is no difference between order and molecularity of a reaction
70. For a reaction $\mathrm{A}+\mathrm{B} \rightarrow$ Products, the rate of the reaction was doubled when the
concentration of A was doubled. When the concentration of A and B were doubled, the rate was again doubled, the order of the reaction with respect to A and B are:
a) 1,1
b) 2,0
c) 1,0
d) 0,1
71. An exothermic chemical reaction occurs in two steps as follows
(I) $A+B \rightarrow X$ (fast)
(II) $X \rightarrow A B$ (slow)

The progress of the reaction can be best represented by
a)

b)

c)

d) All are correct
72. According to the Arrhenius equation a straight line is to be obtained by plotting the logarithm of the rate constant of a chemical reaction (log k) against
a) ${ }_{T}$
b) ${ }_{\log T}$
c) $\frac{1}{T}$
d) $\log \frac{1}{T}$
73. The rate constant is numerically the same for three reactions of first, second and third order respectively. Which one is true for rate of three reaction?
a) $r_{1}=r_{2}=r_{3}$
b) $r_{1}>r_{2}>r_{3}$
c) $r_{1}<r_{2}<r_{3}$
d) All of these
74. Mathematical expression for $t_{1 / 4}$ i.e., when (1/4)th reaction is over following first order kinetics can be given by
a) $t_{1 / 2}=\frac{2.303}{k} \log 4$
b) $t_{1 / 2}=\frac{2.303}{k} \log 2$
c) $t_{1 / 2}=\frac{2.303}{k} \log \frac{4}{3}$
d) $t_{1 / 2}=\frac{2.303}{k} \log \frac{3}{4}$
75. The rate of reaction:
$2 \mathrm{NO}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NOCl}$ is given by the rate, equation rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]$. The value of the rate constant can be increased by:
a) Increasing the temperature
b) Increasing the concentration of NO
c) Increasing the concentration of the Cl_{2}
d) Doing all of these
76. A reaction was observed for 15 days and the percentage of the reactant remaining after the days indicated was recorded in the following table.

Time (days)	\% Reactant remaining
0	100
2	50
4	39
6	25
8	21
10	18
12	15

Which one of following best describes the order and the half-life of the reaction?

Reaction order Half-life (days)

a) First
2
b) First
6
c) Second
2
d) Zero
6
77. In the reaction
$\mathrm{BrO}_{3}^{-}(\mathrm{aq})+5 \mathrm{Br}(\mathrm{aq})+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}(\mathrm{I})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
The rate of appearance of bromine $\left(\mathrm{Br}_{2}\right)$ is related to rate of disappearance of bromide ions as following:
a) $\frac{\mathrm{d}\left(\mathrm{Br}_{2}\right)}{\mathrm{dt}}=\frac{3}{5} \frac{\mathrm{~d}(\mathrm{Br})}{\mathrm{dt}}$
b) $\frac{\mathrm{d}\left(\mathrm{Br}_{2}\right)}{\mathrm{dt}}=-\frac{3}{5} \frac{\mathrm{~d}(\mathrm{Br})}{\mathrm{dt}}$
c) $\frac{\mathrm{d}\left(\mathrm{Br}_{2}\right)}{\mathrm{dt}}=-\frac{5}{3} \frac{\mathrm{~d}(\mathrm{Br})}{\mathrm{dt}}$
d) $\frac{\mathrm{d}\left(\mathrm{Br}_{2}\right)}{\mathrm{dt}}=\frac{5 \mathrm{~d}(\mathrm{Br})}{\mathrm{dt}}$
78. Which one of the following is a second order reaction?
a) $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}$
b) $\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \xrightarrow{\text { Sunlight }} 2 \mathrm{HCl}$
d) $\mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
79. The temperature coefficient of most of the reactions lies between
a) 1 and 3
b) 2 and 3
c) 1 and 4
d) 2 and 4
80. In respect of the equation $\mathrm{k}=\mathrm{A} \mathrm{e}^{-\mathrm{E}_{\mathrm{J}} / \mathrm{RT}}$ in chemical kinetics, which one of the statement is correct?
a) R is Rydberg constant
b) K is equilibrium constant
c) E_{a} is energy of activation
${ }^{\text {d) }} A$ is adsorption factor
81. The rate of chemical reaction (except zero order):
a) Decreases from moment to moment
b) Remains constant throughout
c) Is independent of the order of reaction
d) None of the above
82. For a zero order reaction
a) $t_{1 / 2} \propto R_{0}$
b) $t_{1 / 2} \propto 1 / R_{0}$
c) $t_{1 / 2} \propto R_{0}^{2}$
d) $t_{1 / 2} \propto 1 / R_{0}^{2}$
83. Effect of temperature on reaction rate is given by
a) Claisen-Clapeyron equation
b) Arrhenius equation
c) Gibbs Helmholtz equation
d) Kirchoff's equation
84. The Arrhenius equation expressing the effect of temperature on the rate constant of reaction is:
${ }^{\text {a) }} \mathrm{K}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}}$
b) $K=A e^{-E_{0} / R T}$
c) $K=\log _{e} \frac{E_{a}}{R T}$
d) $K=e^{-E / R T}$
85. Find the two third life $\left(t_{1 / 2}\right)$ of a first order reaction in which $k=5.48 \times 10^{-14}$ per second
a) $201 \times 10^{13} \mathrm{~s}$
b) $2.01 \times 10^{13} \mathrm{~s}$
c) $201 \times 10^{20} \mathrm{~s}$
d) $0.201 \times 10^{10} \mathrm{~s}$
86. $A+B \rightarrow$ Product

If concentration of A is doubled, rate increases 4 times. If concentration of A and B are doubled, rate increases 8 times. The differential rate equation of the reaction will be
a) $\frac{d C}{d t}=k C_{A} \times C_{B}$
b) $\frac{d C}{d t}=k C_{A}^{2} \times C_{B}^{3}$
c) $\frac{d C}{d t}=k C_{A}^{2} \times C_{B}$
d) $\frac{d C}{d t}=k C_{A}^{2} \times C_{B}^{2}$
87. For the reaction $A \rightarrow B$, the rate expression is $r=k[A]^{n}$. When the concentration of A is doubled, the rate of reaction is quadrupled. The value of n is
a) 1
b) Zero
c) 3
d) 2
88. The rate constant for the first order reaction is $60 \mathrm{~s}^{-1}$. How much time will it take to reduce the concentration of the reaction to $1 / 16 \mathrm{M}$ value?
a) $4.6 \times 10^{-2} \mathrm{~s}$
b) $4.6 \times 10^{4} \mathrm{~s}$
c) $4.6 \times 10^{2} \mathrm{~s}$
d) $4.6 \times 10^{-4} \mathrm{~s}$
89. In the reaction,
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ initial pressure is 500 atm and rate constant k is
$3.38 \times 10^{-5} \mathrm{~s}^{-1}$ after 10 min the final pressure of $\mathrm{N}_{2} \mathrm{O}_{5}$ is
a) 490 atm
b) 250 atm
c) 480 atm
d) 420 atm
90. For a chemical reaction, can never to a fraction
a) Order
b) Half life
c) Rate constant
d) Molecularity
91. The time taken for the completion of $3 / 4$ of a first order reaction is
a) $(2.303 / k) \log 3 / 4$
b) $(2.303 / k) \log 4$
c) $(2.303 / k) \log 1 / 4$
d) $(2.303 / 0.75) \log k$
92. $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

What is the ratio of the rate of decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ to rate of formation of O_{2} ?
a) $1: 2$
b) $2: 1$
c) $1: 4$
d) $4: 1$
93. A first order reaction is 75% complete after 32 min . when was 50% of the reaction completed?
a) 16 min
b) 8 min
c) 4 min
d) 32 min
94. For a reaction, $A+2 B \rightarrow C$, rate is given by $+\frac{d[C]}{d t}=k[A][B]$,hence, the order of the reaction is
a) 3
b) 2
c) 1
d) 0
95. The accompanying figure depicts the change in concentration of species X and Y for the reaction $X \rightarrow Y$, as a function of time. The point of intersection of the two curves represents:

$0.4-1$

a) $t_{1 / 2}$
b) $t_{3 / 4}$
c) $t_{2 / 3}$
d) Data is insufficient to predict
96. The rate constant of a reaction at temperature 200 K is 10 times less than the rate constant at 400 K . What is the activation energy $\left(\mathrm{E}_{\mathrm{a}}\right)$ of the reaction?
a) 1842.4 R
b) 921.2 R
c) 460.6 R
d) 230.3 R
97. A zero order reaction is one:
a) In which reactants do not react
b) In which one of the reactants is in large excess
c) Whose rate does not change with time
d) Whose rate increases with time
98. In a first order reaction the $\mathrm{a} /(\mathrm{a}-\mathrm{x})$ was found to be 8 after 10 minute. The rate constant is:
a) $(2.303 \times 3 \log 2) / 10$
b) $(2.303 \times 2 \log 3) / 10$
c) $10 \times 2.303 \times 2 \log 3$
d) $10 \times 2.303 \times 3 \log 2$
99. If the rate of reaction $A \rightarrow B$ doubles on increasing the concentration of A by 4 times, the order of the reaction is
a) 2
b) 1
c) $\frac{1}{2}$
d) 4

100 The rate of chemical reaction
a) Increase as the reaction proceeds
b)Decrease the reaction proceeds
c) May increase or decrease during reaction
d) Remains constant as the reaction
proceeds

